share_log

Non-Magnetic Shell Coating of Magnetic Nanoparticles as Key Factor for Cytotoxicity, NUST MISIS Reports

Non-Magnetic Shell Coating of Magnetic Nanoparticles as Key Factor for Cytotoxicity, NUST MISIS Reports

NUST MISIS报道,磁性纳米颗粒的非磁性壳层涂层是细胞毒性的关键因素
PR Newswire ·  2021/08/31 13:06

MOSCOW, Aug. 31, 2021 /PRNewswire/ -- Russian scientists have found that coating magnetic nanoparticles with a non-magnetic silica shell coating significantly decreased the viability of cancer cells in a low frequency alternating magnetic field. The coating increases nanoparticles stability, preventing aggregation in endosomes and keeping them as effective magneto-mechanical actuators in a low-frequency alternating magnetic field. The study was published in Colloids and Surfaces B: Biointerfaces.

莫斯科,2021年8月31日美通社/--俄罗斯科学家发现,在磁性纳米颗粒上涂覆一层非磁性硅壳涂层,可显著降低癌细胞在低频交变磁场中的存活能力。这种涂层提高了纳米颗粒的稳定性,防止了内体的聚集,并使它们在低频交变磁场中保持为有效的磁机械致动器。这项研究发表在胶体和表面B:生物界面.

Biocompatible magnetic nanomaterials have been intensively studied for various applications in biomedicine. They can be remotely controlled over by an external magnetic field, which makes it possible to specifically affect target molecules on the molecular level.

生物相容性磁性纳米材料在生物医学中的各种应用已经得到了广泛的研究。它们可以被外部磁场远程控制,这使得在分子水平上具体影响目标分子成为可能。

Magnetic nanoparticles cytotoxicity depends on acting magnetic field parameters, the most significant of which are magnetic field amplitude, frequency, and the duration of action. In a low frequency alternating magnetic field, they rotate, causing mechanical damage to cells.

磁性纳米颗粒的细胞毒性依赖于作用磁场参数,其中最显著的是磁场幅度、频率和作用时间。在低频交变磁场中,它们旋转,对细胞造成机械损伤。

Scientists from NUST MISIS, M.V. Lomonosov Moscow State University, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Siberian State Medical University, National Research Tomsk Polytechnic University, Skoltech, D.I. Mendeleev University of Chemical Technology of Russia, Helmholtz Institute for Pharmaceutical Research Saarland and N.I Pirogov Russian National Research Medical University have found that a non-magnetic shell coat significantly increases the cytotoxicity of magnetic nanoparticles. Two types of iron oxide nanoparticles with the same magnetic core with and without silica shells were synthesized. Nanoparticles with silica shells significantly decreased the viability of human prostate cancer cells in a low frequency alternating magnetic field according to the cytotoxicity test, unlike uncoated nanoparticles.

来自NUST MISIS、M.V.Lomonosov莫斯科国立大学、V.Serbsky国家精神病学和肿瘤学研究中心、西伯利亚国立医科大学、托木斯克国立理工大学、Skoltech、D.I.门捷列夫化学技术大学、萨尔兰Helmholtz药物研究所和N.I.Pirogov俄罗斯国立研究医科大学的科学家发现,非磁性外壳涂层显著增加了磁性纳米颗粒的细胞毒性。合成了两种具有相同磁芯的氧化铁纳米粒子,分别带有和不带有二氧化硅壳层。根据细胞毒性测试,与未包覆的纳米颗粒不同,带有二氧化硅外壳的纳米颗粒在低频交变磁场中显著降低了人前列腺癌细胞的活力。

The study has shown that cell death results from the intracellular membrane integrity failure, and the calcium ions concentration increase with the subsequent necrosis. Transmission electron microscopy and dynamic light scattering images showed that uncoated nanoparticles are etched by acidic media in the endosome and form aggregates. As a result, they encounter high endosomal macromolecular viscosity and become unable to rotate efficiently.

研究表明,细胞死亡是细胞内膜完整性破坏的结果,细胞内钙离子浓度随随后的坏死而增加。透射电子显微镜和动态光散射图像显示,未包覆的纳米颗粒被酸性介质蚀刻在内涵体中并形成聚集体。因此,它们会遇到高内质体大分子粘度,并变得不能有效地旋转。

The scientists assume that effective rotation of nanoparticles causes cell death in a low frequency alternating magnetic field. In turn, silica shell coating increases nanoparticles stability, preventing aggregation in endosomes.

科学家们假设纳米颗粒的有效旋转会导致细胞在低频交变磁场中死亡。反过来,硅壳涂层增加了纳米颗粒的稳定性,防止了内吞体内的聚集。

"Our fundings have both theoretical and practical value. We discovered that the non-magnetic phase increases the colloidal stability of nanoparticles, thus being the key to their effective magneto-mechanical actuation. This is important for the fundamental understanding of the mechanism of magneto-mechanical actuation and what the structural features of nanoparticles should be in order to maximize their cytotoxicity. On the other hand, we have shown that our nanoparticles work, they do cause cell death. The next step would be testing their effectiveness in vivo," noted Artyom Ilyasov, NUST MISIS Biomedical Nanomaterials Laboratory.

他说:“我们的基金既有理论价值,又有实用价值。 我们发现非磁性相增加了纳米粒子的胶体稳定性,因此是其有效磁力驱动的关键。这对于从根本上理解磁-机械驱动机制以及纳米颗粒的结构特征以最大限度地发挥其细胞毒性是非常重要的。另一方面,我们已经证明了我们的纳米粒子是有效的,它们确实会导致细胞死亡。下一步将是在活体内测试它们的有效性。阿尔泰姆·伊利亚索夫首页--期刊主要分类--期刊细介绍--期刊题录与文摘--期刊详细文摘内容

Link to the source: https://en.misis.ru/university/news/science/2021-08/7493/

来源链接:https://en.misis.ru/university/news/science/2021-08/7493/

Logo - https://mma.prnewswire.com/media/955872/NUST_MISIS_Logo.jpg

徽标-https://mma.prnewswire.com/media/955872/NUST_MISIS_Logo.jpg

SOURCE The National University of Science and Technology MISiS

来源:国立科技大学MISIS

声明:本内容仅用作提供资讯及教育之目的,不构成对任何特定投资或投资策略的推荐或认可。 更多信息
    抢沙发